Breakthrough in droplet navigation and manipulation
Researchers at The University of Hong Kong (HKU) have made a key breakthrough in droplet manipulation, discovering an innovative way to navigate liquids on a surface in the absence of external force or energy. Their work has been published in the journal Nature Nanotechnology.
A droplet resembles a ball. In-plane droplet control is similar to snooker, where the balls are directed to move along a desired trajectory — a feature highly valued for thermal management, desalination, materials self-delivery and numerous other applications.
Conventionally, researchers fabricate chemical wetting gradient or asymmetric microtextures to drive droplets into motion, similar to designing a conveyor belt to transport the balls. HKU researchers Dr Xin Tang, Dr Wei Li and Professor Liqiu Wang discovered that when a cold/hot or volatile droplet is liberated on a lubricated piezoelectric crystal (lithium niobate) at ambient temperature, the droplet instantaneously propels for a long distance (which can be ~50 times the droplet radius) in furcated routes. Depending on the crystal plane that interfaces with the droplet, the self-propulsion can be unidirectional, bifurcated and even trifurcated.
“This is an unforeseen phenomenon with far-reaching implications,” Prof Wang said. “Droplets with a temperature difference mild at 5°C on a surface can undergo self-sustained propulsion. Imagine placing a ball on a perfectly levelled and smooth table; instead of remaining static, the ball rolls by itself. Even more surprising is that the ball only automatically rolls towards certain definite directions.”
The researchers found that the intrinsically orientated liquid motion is fuelled by cross-scale thermo-piezoelectric coupling, which is caused by the anisotropy of crystal structure. This resembles a smooth table that is atomically arranged in an unusual way such that a symmetric heat source can produce an asymmetric electric field that drives a ball into motion in a direction determined by the cutting direction of the table surface.
“The work enables an innovative way to deliver and transport liquids with controllability, versatility and performance, and provides clues for solving some longstanding challenges such as anti-icing, defrost and antifog in humid environments,” Dr Tang said.
As a droplet strikes a supercooled substrate such as that of an aeroplane wing or power cable, it rapidly freezes and adheres to the surface. In this case, the spontaneous electric force generated by the crystal can perturb the nucleating droplet, potentially decreasing interfacial adhesion and delaying detrimental ice accretion.
Self-propulsion will also upgrade the performance of dropwise condensation by removing growing condensate from the surface, the thermal barrier, and thus potentially providing a promising solution to droplet manipulation in space where gravity-assisted droplet shedding is absent. Moreover, the furcated routes may be selectively chosen by adding external disturbances such as subtle electric fields. In this way, the surface can act as a two- or three-way planar valve to deliver droplets containing information, chemical or biological payloads.
“Clearly, this novel approach to liquid manipulation works for a wide variety of liquids and piezoelectric crystals, hence opening opportunities for further research and new materials and technologies development,” Dr Li said.
Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletters and bimonthly magazine.
Vitamin B2 production integrated into food fermentation
Researchers have successfully produced vitamin B2, also known as riboflavin, in significant...
Desalination breakthrough could bring fresh water to the world
Researchers have found a way to make sea water evaporate faster than fresh water, in a...
Nanoplastics can reduce effectiveness of antibiotics
Using complex computer models, researchers were able to prove that nanoplastic particles can bind...