Sniffer dogs can detect SARS-CoV-2 infection


Tuesday, 31 May, 2022


Sniffer dogs can detect SARS-CoV-2 infection

Trained sniffer dogs can accurately detect airport passengers infected with SARS-CoV-2, the virus responsible for COVID-19, according to research from the University of Helsinki and Helsinki University Hospital. Their work has been published in the journal BMJ Global Health.

Dogs have a keen sense of smell, and can pick up a scent at levels as low as one part per trillion — far exceeding any available mechanical techniques. It is thought that they are able to detect distinct volatile organic compounds released during various metabolic processes in the body, including those generated by bacterial, viral and parasitic infections.

Preliminary data suggested that dogs could be trained within weeks to detect samples from patients with COVID-19 infection, with a degree of accuracy comparable to that of a standard PCR nose and throat swab test. Looking to replicate these lab data results in real-life conditions, the researchers trained four dogs — each of which had previously been taught to detect illicit drugs, dangerous goods or cancer — to sniff out SARS-CoV-2.

To test the dogs’ detection skills, 420 volunteers provided four skin swab samples each. The four dogs each sniffed the skin samples from 114 of the volunteers who had tested positive for SARS-CoV-2 on a PCR swab test and from 306 who had tested negative. The samples were randomly presented to each dog over seven trial sessions.

Overall, the diagnostic accuracy of all samples sniffed was 92%. Combined sensitivity (accuracy of detecting those with the infection) was 92%, while combined specificity (accuracy of detecting those without the infection) was 91%. Only minor variation was seen among the dogs: the best performance reached 93% for sensitivity and 95% for specificity, while the worst reached 88% for sensitivity and 90% for specificity.

Next, the four dogs were put to work sniffing out 303 incoming passengers at Helsinki-Vantaa International Airport between September 2020 and April 2021. Each passenger also took a PCR swab test. The PCR and sniffer results matched in 296 out of 303 (98%) of the real-life samples.

The dogs correctly identified the samples as negative in 296 out of 300 (99%) PCR negative swab tests and identified three PCR positive cases as negative. After re-evaluation with clinical and serological data, one was judged to be SARS-CoV-2 negative, one SARS-CoV-2 positive and one a likely post-infectious positive PCR test result. The dogs also indicated four PCR negative cases as positive, which were later judged to be SARS-CoV-2 negative.

Because the prevalence of SARS-CoV-2 among the airport passengers was relatively low (less than 0.5%), 155 samples from people who had tested positive on a PCR swab test were also presented to the dogs. The dogs correctly identified just under 99% of them as positive. Had these ‘spike’ samples been included in the real-life study, the dogs’ performance would have reached a sensitivity of 97% and a specificity of 99%.

Based on these results, the researchers calculated the proportion of true positive results (PPV) and the proportion of true negative results (NPV) in two hypothetical scenarios reflecting a population prevalence of SARS-CoV-2 of 40% and 1%. For the prevalence of 40%, they estimated a PPV of 88% and an NPV of 94.5%. This means that the information provided by the dog increases the chances of detection to around 90%. For a population prevalence of 1%, on the other hand, they estimated a PPV of just under 10% and an NPV of just under 100%.

In both scenarios, the high NPV backs the use of sniffer dogs for screening, with the aim of excluding people who don’t need a PCR swab test, the study authors wrote. They suggested that “dogs could be used both in sites of high SARS-CoV-2 prevalence, such as hospitals (to prescreen patients and personnel), as well as in low prevalence sites, such as airports or ports (to prescreen passengers)”, which could save time and resources.

The researchers acknowledged that dogs trained to sniff out other substances may mistakenly identify these substances as SARS-CoV-2 positive. The required storage period of the training and spiked samples may also have affected the viability of the volatile organic compounds, they said.

A key finding was that the dogs were less successful at correctly identifying the alpha variant as they had been trained to detect the wild type. According to the researchers, this just goes to show how good dogs are at distinguishing between different scents.

“This observation is remarkable as it proves the scent dogs’ robust discriminatory power,” the study authors wrote. “The obvious implication is that training samples should cover all epidemiologically relevant variants. Our preliminary observations suggest that dogs primed with one virus type can in a few hours be retrained to detect its variants.”

Image caption: Scent dog Silja at the Helsinki-Vantaa airport. Image credit: Egil Björkman.

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletters and bimonthly magazine.

Related Articles

Three-in-one pill could transform hypertension treatment

Australian research has produced impressive Phase III clinical trial results for an innovative...

AI-designed DNA switches flip genes on and off

The work creates the opportunity to turn the expression of a gene up or down in just one tissue...

Drug delays tumour growth in models of children's liver cancer

A new drug has been shown to delay the growth of tumours and improve survival in hepatoblastoma,...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd