Detecting doping with a bacterial enzyme


Thursday, 18 August, 2016

With the 2016 Olympic Games drawing to a close, it’s fair to say that doping in sport is being more closely scrutinised than ever. It is therefore particularly timely that Australian National University (ANU) researchers are developing a new way to detect performance-enhancing drugs at major sporting events.

The team are engineering a bacterial enzyme that could help detect many banned drugs over longer time frames compared with current anti-doping tests. The enzyme interacts with a drug in a urine or blood sample, and works by cleaving off part of the drug to make it easier to analyse.

“It’s an enzyme from bacteria that is found in all sorts of environments, which we’ve purified and studied,” said team leader Dr Malcolm McLeod. The researchers revealed their initial findings on the enzyme’s potential anti-doping applications in a 2015 paper published in the journal Drug Testing and Analysis.

Since this publication, Dr McLeod and his colleagues have received funding from the World Anti-Doping Agency to change the enzyme’s structure. Not only will this enable it to detect more banned substances, it could also enable labs to detect doping for a longer period after an athlete takes a banned drug.

“We’re working with a biotechnology company in Chile to evaluate the improved enzymes, and they have sent them to three analytical labs around the world,” said Dr McLeod. One of these laboratories conducts anti-doping tests for sporting events.

“We hope this enzyme will quickly become a powerful tool used by labs in the fight against doping in sport,” concluded Dr McLeod.

Related News

High-potency cannabis use leaves a unique mark on DNA

Frequent users of high-potency cannabis have changes in genes related to mitochondrial and immune...

Scaffold-based method for culturing antitumour bacteria

Bacteria-based cancer therapy represents an exciting new treatment option — but in order to...

mpox vaccine appears safe and effective in adolescents

Interim analysis of an mpox vaccine trial has found the vaccine is safe in adolescents and...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd