Living skin with blood vessels can now be 3D printed


Wednesday, 13 November, 2019

Living skin with blood vessels can now be 3D printed

Researchers at Rensselaer Polytechnic Institute have developed a way to 3D print living skin, complete with blood vessels. Published in the journal Tissue Engineering Part A, their work serves as a significant step towards creating grafts that are more like the skin our bodies produce naturally.

As explained by Associate Professor Pankaj Karande, a member of Rensselaer’s Center for Biotechnology and Interdisciplinary Studies (CBIS), “Right now, whatever is available as a clinical product is more like a fancy Band-Aid. It provides some accelerated wound healing, but eventually it just falls off; it never really integrates with the host cells.”

A significant barrier to that integration has been the absence of a functioning vascular system in the skin grafts. Assoc Prof Karande has been working on this challenge for several years, previously publishing one of the first papers showing that researchers could take two types of living human cells, make them into ‘bio-inks’ and print them into a skin-like structure. Since then, he and his team have been working with researchers from the Yale School of Medicine to incorporate vasculature.

The researchers have now found that if they add key elements — including human endothelial cells, which line the inside of blood vessels, and human pericyte cells, which wrap around the endothelial cells — with animal collagen and other structural cells typically found in a skin graft, the cells start communicating and forming a biologically relevant vascular structure within the span of a few weeks.

“As engineers working to recreate biology, we’ve always appreciated and been aware of the fact that biology is far more complex than the simple systems we make in the lab,” Assoc Prof Karande said. “We were pleasantly surprised to find that, once we start approaching that complexity, biology takes over and starts getting closer and closer to what exists in nature.”

Once the Yale team grafted it onto a special type of mouse, the vessels from the skin printed by the Rensselaer team began to communicate and connect with the mouse’s own vessels. Assoc Prof Karande noted, “That’s extremely important, because we know there is actually a transfer of blood and nutrients to the graft which is keeping the graft alive.”

In order to make this usable at a clinical level, researchers need to be able to edit the donor cells using something like CRISPR technology, so that the vessels can integrate and be accepted by the patient’s body. According to Assoc Prof Karande, “We are still not at that step, but we are one step closer.”

Assoc Prof Karande said more work will need to be done to address the challenges associated with burn patients, which include the loss of nerve and vascular endings. But the grafts his team has created bring researchers closer to helping people with more discrete issues, like diabetic or pressure ulcers.

“For those patients, these would be perfect, because ulcers usually appear at distinct locations on the body and can be addressed with smaller pieces of skin,” Assoc Prof Karande said. “Wound healing typically takes longer in diabetic patients, and this could also help to accelerate that process.”

CBIS Director Deepak Vashishth concluded, “This significant development highlights the vast potential of 3D bioprinting in precision medicine, where solutions can be tailored to specific situations and eventually to individuals. “This is a perfect example of how engineers at Rensselaer are solving challenges related to human health.”

Image credit: ©stock.adobe.com/au/Sasha

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletters and bimonthly magazine.

Related News

Quitting smoking increases life expectancy even for seniors

Although the benefits of quitting smoking diminish with age, there are still substantial gains...

Stem cell transplants treat blindness in mini pigs

Scientists have successfully transplanted retinas made from stem cells into blind mini pigs,...

Sugary drinks raise cardiovascular disease risk, but occasional sweets don't

Although higher sugar intake raises your risk of certain cardiovascular diseases, consuming sweet...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd