Superfast plant breeding
Plant breeding projects that aim to increase food production traditionally depend on self-pollination for several generations because of the need to obtain ‘pure lines’ of plants - which can take a lot of time.
But this is about to change. A team of international researchers, including researchers from the University of Western Australia (UWA), has developed a new technique that enables up to eight generations of wheat and nine generations of barley to be produced a year.
Until recently, the fastest way to obtain ‘pure lines’ was to exploit differences in latitude or altitude, such as the ‘shuttle breeding’ technique developed by the ‘Father of the Green Revolution’, the late Nobel Laureate Dr Norman Borlaug. However, even this technique, which involves growing plants at different places, achieved only two or three generations a year.
The team - involving researchers from CSIRO, UWA and China - has perfected a method of embryo culture. Although embryo culture has been used before, the team combined it with specially modified water, light, temperature, humidity and potting-mix management to achieve stunning results.
The study was just published in the international journal Euphytica.
Co-author Associate Professor Guijun Yan, from UWA’s School of Plant Biology and Institute of Agriculture, said a skilled technician in the team was able to dissect 60 plant embryos per hour from the developing grains.
“By dramatically shortening times required to obtain pure-line plant genotypes, our method could have wide applications in breeding and biological studies,” Associate Professor Yan said.
TGA approves first treatment for geographic atrophy
Australia has become the first country outside of the United States to approve the use of the...
Damaged RNA, not DNA, revealed as main cause of acute sunburn
Sunburn has traditionally been attributed to UV-induced DNA damage, but it turns out that this is...
Multi-ethnic studies identify new genes for depression
Two international studies have revealed hundreds of previously unknown genetic links to...