Synthetic molecule directs stem cells to turn into heart muscle cells
Stem cells can now be triggered to change into heart muscle cells thanks to a new method involving synthetic molecules, developed by researchers at Kyoto University. The method is said to overcome the challenges facing current approaches and can be fine-tuned to prompt the formation of a variety of cell types.
Human induced pluripotent stem cells (hiPSCs) are generated from adult cells and can be programmed to change into any cell type in the body. The cell type conversion is controlled by coordinated regulation of signalling cues and genes.
Molecules that switch on and off these diverse signals involved in organ development have been used to control the fate of hiPSCs. But molecules that can directly switch off the desired signalling genes have not been found. Furthermore, currently available protocols involve the introduction of foreign genetic material, which could be risky to patients.
Now, researchers from Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) have constructed a synthetic molecule that can recognise and bind with a specific DNA sequence involved in the differentiation of hiPSCs into mesoderm, an intermediary cell type that can be stimulated into changing into heart muscle cells. Their work has been published in the journal Nucleic Acids Research.
When the synthetic molecule, called PIP-S2, binds to its target DNA sequence, it prevents a protein, called SOX2, from binding to the same site. SOX2 is highly expressed in hiPSCs and is responsible for keeping them in their ‘pluripotent’ state, meaning it stops them from converting into other cell types.
In the study, PIP-S2 bound to DNA, leading to the conversion of hiPSCs to mesoderm. The team then added to the hiPSC cell culture another signalling inhibitor molecule that is a known driver for heart muscle cell formation. Heart muscle cells demonstrating the ability to contract and retract were formed within a total period of 12 days.
“To our knowledge, this work reports the first DNA-binding synthetic molecule capable of guiding the differentiation of hiPSCs into a particular cell lineage,” said Hiroshi Sugiyama, principal investigator of the study. He and his fellow researchers believe their strategy could be used to design additional synthetic molecules that target various DNA sequences, inducing hiPSCs to develop into different cell types.
Stem cell experiments conducted in space
Scientists are one step closer to manufacturing stem cells in space — which could speed up...
Plug-and-play test evaluates T cell immunotherapy effectiveness
The plug-and-play test enables real-time monitoring of T cells that have been engineered to fight...
Common heart medicine may be causing depression
Beta blockers are unlikely to be needed for heart attack patients who have a normal pumping...