Gene find turns soldier beetle defence into biotech opportunity

Thursday, 08 November, 2012

New antibiotic and anticancer chemicals may one day be synthesised using biotechnology, following CSIRO’s discovery of the three genes that combine to provide soldier beetles with their potent predator defence system.

CSIRO researchers, and a colleague at Sweden’s Karolinska Institute, published details of the gene identification breakthrough and potential applications recently in the international journal Nature Communications.

“For the first time, our team has been able to isolate and replicate the three genes that combine to make the potent fatty acid that soldier beetles secrete to ward off predators and infection,” said CSIRO Ecosystem Sciences research leader Dr Victoria Haritos.

“This discovery is important because it opens a new way for the unusual fatty acid to be synthesised for potential antibiotic, anticancer or other industrial purposes.”

Soldier beetle.

Soldier beetles exude a white viscous fluid from their glands to repel potential attacks from predators, as well as in a wax form to protect against infection.

The team found this fluid contains an exotic fatty acid called dihydromatricaria acid, or DHMA, which is one of a group called polyynes that have known antimicrobial and anticancer properties.

While DHMA and similar polyyne fatty acids are found in a wide variety of plants, fungi, liverworts, mosses, marine sponges and algae, these compounds have proved very difficult to manufacture using conventional chemical processes. However, Dr Haritos and her team have developed a way to achieve this.

“We have outlined a method for reproducing these polyyne chemicals in living organisms like yeast, using mild conditions,” Dr Haritos said.

Soldier beetles are the only animals reported to contain DHMA. This, together with the observation that the beetles forage on plants (such as daisies) which contain a lot of these types of fatty acids, led to previous incorrect conclusions that the DHMA in soldier beetles was derived from their diet.

“Through our research and the gene differences we have discovered, we now know soldier beetles have evolved this same defensive compound entirely independently of its production in plants and fungi,” Dr Haritos said.

Related News

A simple finger prick can be used to diagnose Alzheimer's

A new study is paving the way for a more accessible method of Alzheimer's testing, requiring...

Experimental blood test detects early-stage pancreatic cancer

The new test works by detecting two sugars — CA199.STRA and CA19-9 — that are...

Biomarkers for dementia vary with time of day

Biomarkers used to diagnose Alzheimer's, including a promising marker for early diagnosis of...


  • All content Copyright © 2025 Westwick-Farrow Pty Ltd