Preventing malaria by removing proteins
Researchers from the Walter and Eliza Hall Institute (WEHI) have shown that the malaria parasite cannot penetrate a human red blood cell when key proteins are deleted.
Their study, published in the journal Cell Host & Microbe, gives fresh hope to the development of much-needed new antimalarial treatment, with existing drugs becoming less effective as the parasite develops resistance.
Professor Alan Cowman and his team at WEHI discovered that three proteins known as Rh5, Ripr and CyRPA together form a complex that plays a vital role in the ability of the Plasmodium falciparum parasite to invade healthy human blood cells. In a study that effectively removed or ‘knocked out’ the Ripr or CyRPA proteins, the malaria parasite was unable to invade the red blood cell, stopping infection.
“These findings hold great promise for understanding the function of these proteins and their development as vaccines,” said Professor Cowman, adding that the development of new vaccines for malaria is a global research priority.
Plug-and-play test evaluates T cell immunotherapy effectiveness
The plug-and-play test enables real-time monitoring of T cells that have been engineered to fight...
Common heart medicine may be causing depression
Beta blockers are unlikely to be needed for heart attack patients who have a normal pumping...
CRISPR molecular scissors can introduce genetic defects
CRISPR molecular scissors have the potential to revolutionise the treatment of genetic diseases,...